Tilting-disc Check Valves Short Body # Tilting-disc Check Valves, Short Body to DIN 3202 Series F4 for liquids and gases, PN 10 - PN 40, DN 150 - DN 2000 Short Body Tilting-disc Check Valves - More than 40 years' experience - Thousands of applications - ⇒ field-approved design - double-offset free-swinging disc - stainless-steel disc facing with resilient-rubber precision sealing - stainless-steel body seat - lever connection facilities provided on both sides - low weight due to short face-to-face dimension - maintenance-free - economical - standard design available from stock ### Scope of Supply #### Sizes DN 150 - DN 2000 #### Pressure ratings PN 10 - PN 40 #### Working temperatures - 20°C up to + 60°C for liquids #### Connection With flanges to DIN With flanges to international standards # Materials Body and valve disc Ductile cast iron GGG Cast iron GG High-grade cast steel Welded steel, stainless steel #### Seals NBR, EPDM or Viton ## Protection against Corrosion EKB epox coating Coating according to customers' request Internal rubber lining, hard or soft In order to avoid any risk of injury, in accordance with the national safety regulations it is necessary to restrict access to the area in which the weight-loaded lever can move. Appropriate safety devices have to be provided by the user. On request, we can supply suitable protective guards. ### **Self-evident Advantages** - 1 Robust body and streamlined disc. - 2 Shafts protruding on both sides facilitating individual mounting of the weight-loaded lever. - 3 Maintenance-free, selflubricating shaft bearings (long shaft supports). - 4 Maintenance-free shaft-sealing. - 5 Robust disc-to-shaft key connection with special key securing device. - 6 Solid, rolled-in body seat ring of stainless steel. - Disc facing ring of stainless steel plus resilient precision seal. ### **Tilting-disc Check Valves – Details** Standard design with weight-loaded lever Product No. PN 10: 5503 9560 PN 16: 5504 9560 PN 25: 5505 9560 | ltem | Description | Materials | Coating | |------|------------------|-----------------------|------------------| | 1 | Body | Ductile cast iron GGG | EKB epoxy | | 2 | Seat ring | Austenitic CrNi steel | | | 3 | Valve disc 1) | Ductile cast iron GGG | EKB epoxy | | 4 | Disc facing ring | Austenitic CrNi steel | | | 5 | O-ring | Elastomer (NBR) | | | 6 | Spacer | Austenitic CrNi steel | | | 7 | O-ring | Elastomer (NBR) | | | 8 | O-ring | Elastomer (NBR) | | | 9 | Shaft | Ferritic chrome steel | | | 10 | Key | Ferritic chrome steel | | | 11 | Locking plate | Austenitic CrNi steel | | | 12 | Hexagon bolt | Stainless steel A4 | | | 13 | Flanged bearing | Ductile cast iron GGG | ЕКВ ероху | | 14 | Bush | Steel-tin-PTFE | | | 15 | Fitting ring | Brass | | | 16 | Washer | Austenitic CrNi steel | | | 17 | Hexagon bolt | Stainless steel A2 | | | 18 | Lever | Steel | EKB epoxy | ¹⁾ DN 150: austenitic CrNi steel | Nominal
size | Face-to-
face
dimen-
sion | Flange
dia. | Flange
dia. | | Space requirement | | | | | | | Feet dimensions | | | Wei | ght | Volume | |------------------------------|------------------------------------|------------------------------|------------------------------|---------------------------|---------------------------|------------------------------|--------------------------|----------------------|----------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------------|------------------------------|------------------------------| | | PN 10 PN 16 | | | | | | | | | | PN 10 PN 16 PN 10 PN 16 | | | | | | | | DN
mm | L
mm | D
mm | D
mm | e ₁
mm | e ₂
mm | e ₃
mm | e ₄
mm | e ₅
mm | e ₆
mm | h ₁
mm | h ₂
mm | b
mm | h ₃ | h ₃
mm | abt.
kg | abt.
kg | m³ | | 150
200
250
300 | 210
230
250
270 | 340
400
455 | 285
340
400
455 | 230
270
300
350 | 210
245
280
325 | 230
250
250
300 | -
20
45
70 | -
-
- | -
-
- | 210
240
250
300 | 150
155
145
180 | 150
160
180
200 | -
175
205
230 | 145
175
205
230 | -
55
80
105 | 45
65
90
115 | 0,05
0,08 | | 350
400
450
500 | 290
310
330
350 | 505
565
615
670 | 520
580
640
715 | 375
400
450
480 | 350
375
410
445 | 350
400
450
500 | 95
118
142
165 | -
-
- | -
-
- | 350
390
450
500 | 200
230
260
290 | 225
250
250
300 | 260
290
315
340 | 270
295
325
360 | 140
170
210
270 | 160
195
240
330 | 0,23
0,32 | | 600
700
800
900 | 390
430
470
510 | 780
895
1015
1115 | 840
910
1025
1125 | 560
640
690
750 | 515
600
655
725 | 600
700
800
900 | 215
263
315
364 | -
10
15
30 | -
-
5
20 | 600
680
800
890 | 350
400
460
510 | 330
400
450
550 | 395
455
515
562 | 425
460
520
570 | 380
520
720
950 | 430
570
765
1020 | - / | | 1000
1100
1200
1400 | 550
590
630
710 | 1230
1340
1455
1675 | 1255
1355
1485
1685 | 820
895
975
1070 | 780
860
935
1070 | 1000
1000
1000
1000 | 410
455
515
615 | 40
55
62
80 | 30
45
35
80 | 990
1030
990
1070 | 570
570
490
480 | 60
650
700
800 | 630
680
730
845 | 635
690
750
850 | 1200
1380
1880
2970 | 1290
1500
2020
3120 | 2,58
2,88
3,43
4,55 | ### Suggestion for Installation of Check Valve and Butterfly Valve **Attention!** Installation must be effected in such a way that the weight-loaded lever of the Check Valve is on the left seen in flow direction and that the gearbox of the Butterfly Valve is on the right, seen in flow direction. Thus, there will be no collision between weight-loaded lever and gearbox. | DN | L | L_1 | e_4 | e ₅ | C | |------|-----|-------|-------|----------------|-----| | mm | mm | mm | mm | mm | mm | | 150 | 210 | - | - | - | - | | 200 | 230 | 150 | 20 | - | - | | 250 | 250 | 150 | 45 | - | - | | 300 | 270 | 150 | 70 | - | 2 | | 350 | 290 | 200 | 95 | _ | 25 | | 400 | 310 | 225 | 118 | - | 40 | | 450 | 330 | 250 | 142 | - | 55 | | 500 | 350 | 300 | 165 | - | 65 | | 600 | 390 | 400 | 215 | - | 95 | | 700 | 430 | 500 | 263 | 10 | 120 | | 800 | 470 | 600 | 315 | 15 | 150 | | 900 | 510 | 650 | 364 | 30 | 180 | | 1000 | 550 | 750 | 410 | 40 | 210 | | 1100 | 590 | 800 | 455 | 55 | 225 | | 1200 | 630 | 900 | 515 | 62 | 270 | | 1400 | 710 | 1100 | 615 | 80 | 320 | | | | | | | | ### Tilting-disc Check Valves with Hydraulic Damping Device Soe Tilting-disc Check Valves with Hydraulic Damping Device are used in the following cases: If reverse flow is permitted and the valve has to close in a retarded way. The requested closing time can be set exactly by means of a flow control valve relatively irrespective of pressure and viscosity. ## Soft, damped closing. Minimizing water hammer phenomena. If effective non-slam performance is required. The hydraulic damping device acts in both limit positions keeping the disc from chattering over the whole travel. Minimizing possible disc slams, safe operation. ### Typical Applications for Tilting-disc Check Valves with Hydraulic Damping Device #### Collecting pipe with parallel pumps #### **Rising mains** - Short pipeline. - In case of failure of a pump with small flywheel, there will be abrupt flow reversal and acceleration of the closing movement. Without hydraulic damping device, this would lead to slams and considerable water hammer phenomena. - The back pressure acting upon the closing valve disc is the pump pressure. - Long, steep pipeline, considerable flow retardation. - Increased delivery head. - Quick flow reversal leading to slams and water hammer phenomena. - The back pressure acting upon the closing valve disc is the delivery head. # Functional and Control Diagram of a Hydraulic Damping Device Soe **ERHARD** Hydraulic Damping Devices are double-acting, i.e., damping is effective in Opening direction and in Closing direction. Appropriate kinematics and shape of the damping cylinder brings about the damping zones shown in the below diagram. The hydraulic damping device is of very compact design and well approved in terms of ease of maintenance, adjustability, and functionality thanks to its being installed externally. If the standard types are equipped with hydraulic damping cylinder, due to shaft dimensioning and material, the admissible back pressure is limited as follows: | DN | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 600 | 700 | 800 | 900 | 1000 | |----------------------------------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| | Max. admiss. back press. in bars | 12,5 | 14,5 | 7,1 | 8,5 | 5,4 | 3,6 | 4,5 | 3,3 | 3,2 | 3,1 | 2,9 | 2,9 | 2,9 | ### Lever arrangement ### Special design **ERHARD** Tilting-disc Check Valve with pneumatic full-opening device, ensuring: - low head loss irrespective of the opening degree - very economical operation #### **Characteristic Curves** Measured curve of an **ERHARD** Tilting-disc Check Valve DN 500, PN 10, with weight-loaded lever for installation into a horizontal water pipeline. Thanks to geometric similarity, the values can be applied to other nominal sizes for approximate calculation. Please, contact us for exact values, data, and calculation. Postfach 1280 · D-89502 Heidenheim Phone: (07321) 320-0 · Fax: (07321) 320-525 http://www.erhard.de e-mail: export@erhard.de